From 1 - 1 / 1
  • Categories  

    Objectives: To quantify marine halocarbon emission variability and latitudinal variation, characterise in situ open ocean atmospheric reactive iodine latitudinal variability and characterise oxidative chemistry perturbation due to oceanic emission of halogens from the Mauritanian upwelling region. Rationale: Transecting from the UK through Biscay, south past the west coast of Africa, through the Mauritanian upwelling, to pass Cape Verde simultaneous to the intensive deployment at the UK SOLAS Observatory on Sao Vicente, the measurements made on Discovery cruise D319 are intended to provide a detailed latitudinal characterisation of marine atmospheric halogen chemistry. This will feed validation and constraint data to regional and global models in projects linked to RHaMBLe. In addition the cruise will address a number of key scientific questions required to determine the global importance of iodine chemistry and to further our understanding of the controls of halogen chemistry in the remote ocean: i) How heterogeneous are the direct halogen sources and on what scale is the heterogeneity - does the upwelling region produce more or less halogens than the 'background' region? ii) What are the relative contributions of I atoms to the remote MBL from I2 and organic iodine? iii) Is sufficient iodine released to the remote MBL to sustain aerosol nucleation or to significantly affect the ozone budget and free radical populations? Measurement Description: Measured species included a variety of halocarbons in both water column and atmosphere and atmospheric boundary layer measurements of I2, OIO and IO by Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS). A compact version of the FAGE system, developed for the FAAM BAe-146, was deployed to provide measurements of IO or OH / HO2, permitting direct assessment of RHS-induced changes in the oxidising environment through the upwelling region. A range of trace gas monitors was simultaneously deployed to measure O3 and NOx. Aerosol number and size distribution measurements from 3 nm to 20 micron diameter were also made by a range of mobility (SMPS) and optical instrumentation, (OPC and FSSP). Additional aerosol measurements were provided as part of the NERC-funded ACMME project (PI Allan). Measurements of pigments in the surface waters were made by HPLC. Prevailing meteorological conditions were used to direct the cruise in terms of geographical positioning and measurement interpretation, e.g. i) exploitation of any broad flow connection between Cape Verde and the ship to interpret measurements as process studies and ii) identification of in- and out-of-plume conditions to contrast chemistry influenced and uninfluenced by emissions from the upwelling region.